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Homogeneous branched-chain explosion: Initiation to completion* 
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SUMMARY 
This paper traces the complete time history of a spatially homogeneous model of a branched-chain reaction 
through asymptotic methods and develops (i) a subcritical solution (fizzle) where the state variables change by 
small amounts, and (ii) a supercritical solution (explosion) where extremely rapid transients occur. Three distinct 
time scales are seen to govern the explosion: a long induction period exhibiting a very slow change of state (as in a 
thermal explosion), a very brief period characterized by a rapid increase in the chain-carrier concentration but a 
small increase in temperature (unlike a thermal explosion), followed by a longer period in which most of the 
chemical heat is released. 

I. Introduction 

In the literature of chemistry and combustion,  the term "explosion" refers to the event in 

which a series of chemical reactions is continually accelerated at a rate such that  most  of  the 

chemical activity is completed in a time interval of  u tmost  brevity. Emission of light, 

momen ta ry  a t ta inment  of  high temperature and rapid variation of pressure may or  may  not  
accompany  the process. 

Spontaneous  explosions, i.e. those that  occur without  the aid of external initiating devices 

such as an electric spark, a hot  wire or  a subsidiary flame, are of  two types. They may  be due 

either to the exothermicity of  the reaction (thermal explosion) or  to its chain character  

(branched-chain explosion). In the former the overall exothermic reaction increases the 

temperature of  the reacting gas, thereby accelerating the rate of  reaction and thus the heat- 

release rate. This bui ldup leads to an explosion unless heat is abstracted from the system 

sufficiently rapidly so that  the resulting reaction is a "fizzle", characterized by a gradual  
change of  state. 

A branched-chain  explosion can occur when the reaction proceeds by a chain mechanism, 

i.e. the reactants are t ransformed into products  through so-called propaga t ion  reactions 

with active intermediaries called chain carriers. Consider, for example, the combusion of 

Hydrogen  and Oxygen. The overall reaction 2H 2 + 0 2 ~ 2 H 2 0  is believed to occur in the 
following steps (see Semenov [1], p. 153, 189): 

H 2 + 0 2 ~ H + H O  2 (initiation**) 

* This research was supported by the U. S. Army Research Office, Durham under Grant DAAG 29-76-G-0253. 
** There is a lack of unanimity on the initiation step; see Dainton [21 p. 150. 
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H + O2--*OH + O } 

O + HE--~OH + H 

O H  + H 2 --* H 2 0  + H 

(propagation of the branched chain) 

t H, OH, O, HO 2 w~ stable species (termination) 
H + 0 2 + M ln'-'-tfrlo'--'~r HO2 + M 

Here the atoms H and O and the hydroxyl radical OH act as chain carriers. A single H 
atom generated in the initiation step swells to a total of 3H atoms at the end of one 
propagation cycle. In fifty cycles of such a chain, each original H atom would have grown to 
350 , or approximately, 1024 atoms. It is this Malthusian growth of the branching chain 
which makes it possible for it to provoke an explosion. 

The rise in the concentration of the chain carriers is, of course, retarded by the 
termination steps which occur either through absorption at the vessel walls or through 
three-body collisions in the interior (M, the third body, is any one of the other species 
present). The competition between the propagation rate and the termination rate de- 
termines the eventual outcome of the reaction. 

In a study of a potentially explosive event, the following questions may be asked: 
(i) Given a set of experimental conditions, what is the criterion for an explosion to occur? 
(ii) If an explosion results, what is the time elapsed prior to its occurrence, i.e. what is the 

induction period? 
(iii) What is the time history of the temperature and reactant concentrations from 

initiation to completion? 
Although such questions were first considered fifty years ago by Semenov [3] and later by 

several authors, including Frank-Kamenetskii [4], a complete solution for the thermal 
explosion problem was developed only recently by Kassoy* [5], who carried out an 
asymptotic analysis in the realistic limit of large activation energy. The purpose of the 
present work is to develop an analogous theory for the branched-chain explosion. In 
particular, the non-isothermal character of the chemical reactions is taken into account; a 
feature missing from previous studies (Semenov [1], chapter IX). We present a mathemati- 
cal model that retains the essentials but contains several simplifications based upon the 
actual features of a chain-branching reaction such as the Hydrogen-Oxygen system 
discussed above. First a criticality criterion is given, and then a complete time history of the 
supercritical event is developed. The analysis in the text is carried out only to leading order 
in order to emphasize the physical aspects of the development. Higher-order calculations, 
which are essential for a complete determination of the leading-order solution, are relegated 
to the Appendix. 

2. Mathematical model 

Consider a vessel filled with a potentially reactive mixture containing a single reactant A. 
We make the following assumptions: 

* See [5] for a detailed bibliography. 
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(i) The reactant A is converted into products through reaction with a single active 
intermediary C according to the second-order chain-branching step 

A + C -+ (1 + n)C + products (2.1) 

(ii) The sole recombination process occurs at the walls of the vessel according to first- 
order kinetics, i.e. 

C w_~ stable species. (2.2) 

As mentioned in the Introduction, chains may also be terminated, in general, through three- 
body collisions in the gas. However, their effect is ignored here; a valid assumption if the 
pressure is not excessive (Strehlow [6], p. 104) or if the vessel is not too large* (Dainton [2], 
p. 103). 

(iii) Rather than postulate an initiation reaction, which is usually far slower than the 
other two steps (Semenov [1], p. 111) and therefore unlikely to influence the overall reaction 
rate, we assume that a small concentration of chain carriers is already present in the starting 
mixture. Experimentally the assumption corresponds to the injection into the system of 
chain carriers produced externally, or their generation within the gas by a short radiation 
burst (Dainton [2], pp. 60-67). 

(iv) The propagation step (2.1) is assumed to have a strongly temperature-dependent 
rate, i.e. a large activation energy, but is considered to be thermally neutral. (In the 
Hydrogen-Oxygen system, only five percent of the total heat release occurs in the 
propagation steps.) 

(v) The overall reaction is assumed exothermic with the entire heat being liberated in the 
termination step (2.2). In practice the rate of this step is weakly dependent upon 
temperature, and either weakly or inversely proportional to the pressure (Semenov [1], p. 
118). Our model assumes the rate constant of the termination reaction to be independent of 
temperature (zero activation energy) and pressure. 

(vi) The system is assumed to be spatially homogeneous. This appears to be a strong 
assumption because in reality the effect of wall termination can be rigorously represented 
only by a diffusive term. However it is a useful approximation (Dainton [2], p. 103) to model 
it by a spatially uniform term, much like the replacement of the heat conduction effect by a 
uniform heat sink in the thermal explosion problem [5]. 

The mathematical equations governing the reactive system are those of species and heat 
conservation (Williams [7]): 

p d YA/dr = -- WAB ~ (pXA/R T)(pXc/R T) exp ( - E , /R  T), 

Pd Yc/dr = WcnB~ (p X A/R T)(p Xc/R T ) exp ( -  E , /R  T) - WcB2(PXc/R T ), 

pcpdT/dr = Q WcB 2 (pXc/R T), 

* Gas termination, being a volume effect, is more pronounced in large vessels than wall termination, a surface 
effect. 
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where Y~ is the mass fraction, X i the mole fraction and W~ the molecular weight of species i; p 
is the pressure, p the density and T the temperature of the mixture; and B1, B z are the pre- 
exponential factors and El,  E z the activation energies of the reaction steps (2.1) and (2.2) 
respectively (E 2 is taken to be zero in accordance with assumption (v) above). Finally, Q is 
the heat release per unit mass, R the universal gas constant, cp the specific heat at constant 
pressure and r the time. For simplicity of the analysis, we shall assume cp and the Bi to be 
constant. 

Elimination of p and Xj through the relations 

p = pRT~. ,  YJW~, (2.3) 
i 

Xj = (YjWyY.  (Y//WI), (i summed over all species) 
i 

reduces the governing equations to 

dYa/dz = - (BIp/Wc)  Ya Yc exp ( - E t / R  T), (2.4a) 

dYc/dz = (nWc/WA)(Bxp/Wc) Ya Yc exp ( - E I / R  T ) - B 2 Yc, (2.4b) 

(cJQ)dT/dz  = B 2 Yc. (2.4c) 

Appropriate initial conditions are 

T(0) = T o, Ya(0)= Yao, Yc(O) = Yco, (2.4d) 

where the initial chain-carrier concentration Yc0 is assumed small in accordance with 
assumption (iii) above. Nondimensionalization via the relations 

z = t/B2, T = ToO, (B~PToCp)/(B2WcQ) = )~, RTo/E x = e, 

ra = (TocJQ)(Wa/nWc)Y, Yc = (TocJQ)z  

reduces the set (2.4) to 

dy/dt = -g2, (2.5) 

dz/dt = £2 - z, (2.6a) 

dO/dt = z, (2.6b) 

with 

0(0) = 1, y(O)= a and z(O)= eft, 

and the chemical term 

£2 = 2yz e x p ( -  l/e0). 

The quantities 
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= ( Q / T o c p ) ( n W c / W a ) Y a o ,  f l  = ( Q / T o c , ) ( n W c / W a ) ( E f f R T o ) Y c o  

are considered 0(1). It may be noted that in eqn. (2.6d), 2 is a measure of the propagation- 
reaction rate relative to the termination-reaction rate. 

We seek to solve the above system asymptotically in the limit e ~ O. It is worth noting that 
the exact integral 

0 + y + z = 1 + e + eft (2.6e) 

may be thought of as defining y and replacing equation (2.5). Also, it shows that the 
maximum temperature attainable in the system (corresponding to y = z = 0) is given by 

0 m a  x = 1 + c~ + eft. (2.7) 

3. Induction regime and criticality criterion 

Equations (2.6) pose an initial-value problem which must have a solution for all values of 2 
when the remaining parameters are specified. However, if the solution is constrained to have 

a specified character, 2 must be appropriately restricted. On defining the quantity 0 by 
2 = exp(0/e), it is clear that 0 must be unity for a well-defined explosion preceded by a finite 
induction period to occur. For  0 < 1 the chemical term 12 is exponentially small as e ---, 0 [cf. 
eqn. (2.6d)], showing that the propagation reaction is too slow relative.to the termination 
reaction to result in anything but a "frozen" state. For 0 > 1, I2 is exponentially large, i.e. the 
propagation reaction is so fast as to cause an "instantaneous" explosion. We do not consider 
the last two possibilities. 

More precisely, we let 2 have the expansion 

2 = (2 0 + . . . ) exp (1 / e ) ,  (3.1) 

where 2 o is O(1), so that from (2.6d), 

(2 = (20 + . . . ) y z  exp [(0 - 1)/eO]. (3.2) 

Here 2 o is an assignable quantity which measures the speed of the propagation reaction 
relative to that of the termination reaction on an O(exp (l/e)) scale. 

The appropriate expansion for 0, suggested by the exponent in the expression (3.2), is 

0 = 1 + eO 1 + . . .  (3.3a) 

and correspondingly, the expansions for y and z are 

y = ~ ( 1  + e y  1 + . . . ) ,  z = e z  a + . . . .  (3.3b) 

Substitution into (2.6) yields the leading-order equations 

d z l / d t  = ~2oZ 1 e °1 - z 1, d O f f &  = z 1, 

01 + ~Y l  + z l  = t ,  

(3.4a) 

(3.4b) 
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Figure 1. Graph of dO1/dt for various 2 o. 

TABLE 1 
Data used in the construction of graphs 

o, 

A. K. Kapila 

a = 1,0 fl = 0.5 2 o --- 0.5 e = 0.05 

with 

01(0 ) = 0, z l(0 ) = ft. (3.4c) 

The above problem has a first integral given by 

dO1/dt = ~2o(e °1 - 1) + fl - 01, (3.5) 

which m a y  be integrated again to yield 

fi ' - 1) + fl - x ] -  l dx = t. [~2o(e  x (3.6) 

The nature  of  this solution can be ascertained by considering Fig. 1 which shows the graph  
of dOt/dt as a function of 01. (The numerical  da ta  used in construct ing this g raph  as well as 
those to follow is displayed in Table  1.) Fo r  ~t2 o > 1 the graph  is m o n o t o n e  increasing, while 

for ~2 o < 1 it has a m in imum value 1 + fl - ct2 o + ln(a2o) at 01 = - ln(ct2o) .  This mi- 
n i m u m  vanishes at the critical value 2oc of 20, given by the smaller of  the two roots  of the 
equat ion * 

exp [a2oc]/a2oc = exp (1 + fl), (3.7) 

the corresponding value of 01 being 

01c = - In [a2oc ]. 

• For fl > 0 eqn. (3.7) has two positive roots, one each on either side of 1/a. 
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0.5 

i 

0 1 2 3 

Figure 2. Graph of ~2oc versus ft. 

Thus we find that for fixed fl, 2oc is inversely proportional to ~. For fixed a, the plot of ~2oc 
against fl (Fig. 2) shows that 2oc falls off rapidly with increasing fl, indicating that even for 
small 2 o the system may become critical at moderate values of ft. (We recall that moderate 
values of fl correspond to O(e) values of initial chain-carrier concentration.) 

3.1. Subcritical theory 
If 20 < 2oc, dO1/dt vanishes at a finite value 01~ o of 01 where 01~ < O~c and is given by the 
smaller zero of the right hand side of (3.5). Equation (3.6) then shows that 0~ decays to 0~ o0 
exponentially, i.e. 

01 ~ 01oo[1 - exp{(1 - ~2o e°'=) (t o -- t)}] as t--, ~ ,  

where 

to = [ { ~ , ~ o ( e  ° - 1)  + / ~  - 0}  - 1  - (1 - ~ , ~ o e ° l ~ ) -  1 (01® - 0 ) _  q d 0 .  

Eqns. (3.3) and (3.4) then show the ultimate state of the system to be an O(e) perturbation of 
the original, i.e. 

0 ~ 1 -~- ~ 0 1  ~ ,  7 ,.~ 0 and y ,-~ ct -- e(01 oo -- fl) as t ~ ~ .  

Physically, the propagation step is too slow for the chain-carriers to be generated in large 
quantities. Instead, their concentration decays, resulting in a fizzle reaction. A typical time 
history appears in Fig. 3. 

3.2. Supercritical theory 
If 2 o > 2oc, the induction-period solution (3.6) develops a singularity at a finite value of t 
given by 

t~ = f o  [~2°(eX - 1) + fl - x ] - ldx .  (2.15) 
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Figure 3. Histories of the perturbation quantities 01, ~Yl and z 1 for the subcritical case. 
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Figure 4. History of perturbation temperature 01 for the supercritical case. 
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Figure 5. Graph of t~ versus a2 o at fixed/~. 
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In fact, it can be shown that 

0 1  " ~  - -  In [ct,Eo(too - t)] as t --* too, 

while Yl and z 1 are singular like (too - t)- 1. A typical time history of 01 is shown in Fig. 4. 
This singularity in the perturbation solution characterizes a rapid reaction event (explosion) 
and the time too which signals the onset of explosion is known as the induction period. Fig. 5 
is a plot of too against 0t2 o for fixed fl and shows, as expected, that too becomes unbounded as 
2 o approaches 2oc from above. 

4. Explosion regime 

The singular behavior of the induction solution exhibited above demonstrates the need for 
new asymptotics near time too. Therefore we employ the stretching 

too - t = ea ,  (4.1) 

rewrite equations (2.6a, b) as 

d z / d a  = - e 2 y z  exp ( -  l/e0) + ez ,  dO/dtr  = - ez,  (4.2) 

and seek the expansions 

0 =  1 + e ( - l n e  + ~bo) + . . . ,  y=~/o  + . . . .  Z = ( o + . . . ,  (4.3) 

the expansion for 2 being (3.1) as before. We note that while z has grown to become O(1) in 
the explosion zone, 0 is still a small perturbation of the original temperature unity. This is in 
marked contrast to a thermal explosion [5], where the temperature grows to an O(1) 
departure away from its initial value. Substitution of (4.3) and (3.1) into (4.2) and (2.6e) 
yields the leading-order equations 

d C o / d a  = - 2or/oC o exp (~bo), dq~o/da = - Co, (4.4a) 

and 

t/o = a - Co, - ~  < a < oc>. (4.4b) 

These equations integrate to 

f~ o [exp( -2o  ex) _ 1] - I  d x  = eta (4.5) 

where the constant/z = ~b0(0 ) is determined by higher-order matching with the induction 
solution (3.3) (see eqn. CA.15) in the Appendix). The expressions for (o and 7o can then be 
written down by using eqns. (4.4). 

The solution for gb o is displayed in Fig. 6. It has the asymptotic behavior 

q~o = - a a  + K 4 + a.e.s., (4.6a) 
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10 

-10 
i i 

15" 

Figure  6. G r a p h  of ~bo(Ct ) versus  ct(tr + ao) , where a o = ct-1 Sg ( e x p ( - 2 o C  ) - 1)-ldx. 

(o = ~t + a.e.s, and r/0 = a.e.s, as a ~ - o o  (4.6b) 

where a.e.s, stands for quantities asymptotically exponentially small and K 4 is a constant 
defined by eqn. (A.16) of the Appendix. Thus the entire reactant A is consumed in the 
explosive regime, while the concentration of the chain carriers rises to the 0(1) value ct. The 
temperature perturbation ~b o becomes unbounded, suggesting the breakdown of the 
explosion-zone asymptotics. 

5. Thermal regime 

The singularity in the solution for the temperature in the explosion zone suggests that in the 
post-explosion period, 0 is 0(1) away from its initial value of unity. Then from (2.6d) t2 is 
exponentially large unless y is exponentially small (exponentially small z would not match 
the explosion-zone solution). Therefore, from (2.5) and (2.6), the reduced equations valid in 
this regime are 

y = O, d z / d t  = - z  and dO/dt  = z,  (5.1) 

leading to the solution 

y = O, z = A ( e ) e x p ( t o o  - t), 0 = B(e )  - A ( e ) e x p ( t ~  - t). (5.2) 

Here B and A are determined by matching with the explosion-zone solution (see Appendix). 
The result is 

A = ~ + e l n e  + e ( f l -  K4) + . . . .  

B = l + ot + e fl, 

(5.3a) 

(5.3b) 

where K 4 is the constant appeared in eqn. (4.6a). Thus, z ,-, 0 and 0 ~ 0~a X = 1 + • + eft  as 
t ---* o0. 
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Figure 7. Histories of 0, y and z for the supercritical case. 

6.  C o n c l u s i o n s  

Large activation-energy asymptotics have been employed to derive complete solutions for a 
spatially homogeneous model of the branched-chain reaction process. The critical para- 
meter governing the nature of the solution is found to be 20, a suitably scaled version of the 
propagation-step rate relative to the termination-step rate. If 2 o is below a critical value 2oc 
the ultimate state of the system is but a small perturbation of the initial state, i.e. a fizzle 
reaction occurs. If 2 o exceeds 2oc an explosion takes place. The system may go critical at a 
smaller value of 20 if the initial concentration of either the reactant or the chain carrier is 
increased. 

The explosion phenomenon occurs over three distinct temporal zones. The induction 
process occurs over a time scale t = O(1) which, physically, is representative of the time 
characterizing the termination reaction. During this period the temperature and the chain- 
carrier concentration rise while the reactant concentration falls, all changes being small. The 
explosion regime which follows next is extremely rapid, characterized by an O(e) time scale, 
in which all the reactant is consumed and the chain-carrier concentration reaches a 
maximum value. Unlike a purely thermal explosion, however, the temperature rise is still 
small. Most of the heat release occurs subsequent to explosion, again on an O(1) time scale, 
when all the chain-carriers are claimed by the exothermic termination reaction and the 
temperature reaches a maximum. 

While only leading-order terms were treated in the text, the analysis has been carried out 
to higher orders in the Appendix. Fig. 7 depicts the complete time histories of the 
temperature and concentrations calculated by using composite expansions based on the 
higher-order (upto O(e2)) results. 

Once the temperature and species concentrations are known, the pressure in the system 
can be calculated from eqn. (2.3). We note that if the molecular weights of all the species are 
equal, pressure is directly proportional to temperature. In any event, since the quantity 
Zl Y~/~ lies between zero and unity, pressure variations are of the same order as 
temperature variations. In particular, the pressure remains essentially constant through the 
explosive regime and almost the entire rise in pressure occurs in the thermal regime. 
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Appendix A: Higher-order supercritical analysis 

The essential purpose of this Appendix is to provide additional details and to determine, in 
particular, the yet unknown constant  p appearing in equat ion (4.5). 

A.1. Induct ion Reg ime  

We begin again with eqns. (2.6) but  for brevity, treat the system as a second-order problem 
in 0: 

d20/dt 2 + dO/dt = 2(1 + ct + eft - 0 - dO/dt )(dO/dt ) exp( - 1leO), 0 <_ t < ~ ,  

with 0 = 1, dO~dr = eft at t = 0. Once 0 is known, z and y can be calculated from eqns. (2.6b) 
and (2.6e) respectively. 

The appropriate  expansions for 2 and 0 a re*  

2 = exp(1/e)(2 o + e In e21 + e22 + . . . ) ,  

0 = 1 + e01 + e 2 In •0 2 -[- e203 -I- . . . .  

(A.1) 

(A.2) 

where, as we shall see, 2 o is assignable but  the remaining 2~ (i = 1, 2 . . . .  ) are determined as 
parts of the solution. The appearance of logari thms in the gauge-function sequence is not  
evident a priori; we have anticipated matching requirements that  will occur later. 

The  leading-order problem, already discussed in the text, has the solution Or(t; or, fl, 20) 
given implicitly by eqn. (3.6). Its asymptotic  behavior  in the limit t ~ t® will be needed for 
matching later. With 

p = a~,o(t~ - t), 

we find that  

1 1 
01 = - In p - ~ p In p + ~ (06t 0 - fl + ½)p + O[p2(ln p)2] as p ~ 0. 

z~ t  o z~,t o 
(A.3) 

The problems for 02 and 0 a are, respectively, 

L(02) = ~21e°l(dO1/dt), 0 < t < 0% 

0 2 = d O 2 / d t = O  at t = 0 ,  

and 

L(03) = 0t22 e°, (dO1/dt) 

+ or20 e °' (dO1/dt)[ - 02 + ~t- 1 (fl _ 01 _ dO1/dt)] ' 0 _ < t < ~  o9, 

(A.4) 

* A referee has suggested that 2, being a physically assignable quantity, should be treated as fixed, and that rather 
than (A.1), an expansion for the explosion time t~o should be derived. While such an approach may be more 
attractive physically, it was found that the mathematically equivalent procedure adopted here was more 
convenient. 
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0 3 = dO3/dt = 0 at t = 0, (A.5) 

where L is a linear differential operator with variable coefficients, given by 

L - d2/dt 2 + (1 - ~2oe°~)d/dt - ~).o e°l (dO1/dt). 

It can be shown that 

- - 2 - - + 2 1 C ~  p -  2 e 2 o l n p - ~ ( c ~ 2  o - f l - ½ )  +O(plnp)  as p ~ 0 ,  (A.6) 

and 

03 _- 2 -  p -  1 In p + C2~.2p- 1 + 1 + (In p)2 

/ (a2o + 3fl - FC222 1 ( ~ 2 o _ f l + ~ )  l n P + 1 2  2o 4a 
F '~2 1 

+L2 o 
_ C22._.._.~2 (a2 ° _ f l _ ½ ) |  1 + O[p(lnp)2] as p ~ 0 ,  

2~2 o J 
(A.7) 

where the constants C 1 and C 2 depend upon ct, fl and 2 o only, and can be determined by 
solving the problems (A.4) and (A.5) numerically. Henceforth we shall treat these constants 
as being known. 

A.2. Explosion Regime 
The independent variable is now a, defined by the stretching (4.1), and the appropriate 
expansion for 0 is 

(A.8) 0 = 1 + e(- - lne  + ~0) + e2[(ln e) 2 + lneq~l + q~2] + . . . .  

The expansion for 2 is, of course, given by (A.1) as before. Equation (4.5) provides the 
solution for 4)0, which can be shown to have the asymptotic behavior 

(A.9) 

Here, 

K3o.- 1 - 1 In (a2oa) + 1 ~b o ,-~ - In (C~2otr) + ~ -  cr CO-o 

1 + 1 ( K  3 1 )  
+8~a2a-2[ln(a2°a)]2 ~ -  22o 4- a-21n(a2°a)  

1 K3 1-'I0"-2 as a ~  or. 
+ ~ -  \222 22 o 12,,/ 

(A.10) F ~t2° + l~-e" + 2 o F(y)dy K3 = - e - U  + ~ -  .... 
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and 

1 1 1 1 - - +  + 
F(y) =- y(e_ r _ 1) + y2 ~-y -~-" 

The constant p now appears in K a above and is yet to be determined. The equations for (~1 
and ~b 2 are, respectively, 

L(~I) = -2oe°°~bo[(a + ~b;)(21/2o) + 1 + 2~bo(Ct + ~bo) ], - oo < a < ~ ,  (A.11) 

and 

L((~2) = -2oe*%bo[(a + q~o)(21/2o) + fl - q~o - (a + q~)~b 2] + ~b o, 
- -00  ~ 0 " ~  90, (A.12) 

where primes denote differentiation with respect to a and L is the differential operator 

L = d2/da 2 + 2oe~°(a + 2qYo)d/da + 2oe*°~b~(a + ~bo). 

The general solutions ~b 1 and (~2 of (A. 11) and (A.12) respectively can be shown to have the 
expansion 

and 

( q~l~Pxa+ 2 - ~ -  a lna  (-~-o 1 )  1 21 P1 K 3 + 2 -  :t - - - ,  as t r~oo,  (A.13) 
)~o ct 

dp2 ~ -½a ln(a2oa) + P2a + (1 + 1 ) [ l n ( a 2 o a ) ] 2  + Q21n(a2oa) + R2, 

as o" ---~ oo, (A.14) 

where P1, P2, Q2, R2 are yet unknown. We now match the 3-term induction solution (A.2) 
with the 3-term explosion solution (A.8). Details are omitted because matching is straight- 
forward. It is found that 

20 2 2 = K 3  =0 ,  P I = - ½ ,  P 2 = ½ ( a 2 o - f l  +½), 
21 = - 2C--~' C 2 

1 
Q2 = - ~-a (a2° - fl + ~)' R2 = 2 - (cO, o + 3fl - 7) 

and the constant/z is given by the implicit relation 

/~2o fi 'oe, F(y)dy + . .  e ~ + 20 = 0. K a = _ e - ,  + - - f -  
L ~  

(A.15) 

Matching involves the use of the asymptotic expressions (A.3), (A.6), (A.7), (A.9), (A.13) and 
(k.14). 
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In order  to match  with the post-explosion (thermal regime) solution (5.2) developed in 

the text, we shall need the asymptot ic  expressions for ~bo, ~b I and ~b 2 as a ~ - o o .  The 

behavior  of  ~b o is given by (4.6a) while the expressions for ~b 1 and ~b 2 are found to be 

q~l "~ - a  + 0(1), (o 2 ~ -½o~o 2 - (fl - K4)a + 0(1), as a -o - o% 

where 

f '~  e - r d y  K4 = y ( ~  1) +/~" (A.16) 
oe-  

Matching  of  the 2-term thermal solution (5.2) with the 3-term explosion solution (A.8) then 

leads to (5.3). 
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